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Abstract. Spec# is the latest in a long line of work on programming languages
and systems aimed at improving the development of correct software. This paper
describes the goals and architecture of the Spec# programming system, consisting
of the object-oriented Spec# programming language, the Spec# compiler, and the
Boogie static program verifier. The language includes constructs for writing spec-
ifications that capture programmer intentions about how methods and data are to
be used, the compiler emits run-time checks to enforce these specifications, and
the verifier can check the consistency between a program and its specifications.
The Spec# programming system is currently under development.

0 Introduction

A holy grail in computer science is the ability to support software engineers in the
construction of correct and maintainable software. Techniques for reasoning about pro-
gram correctness have strong roots in the late 1960’s (most prominently, Floyd [25] and
Hoare [31]). In the subsequent dozen years, several systems were developed to offer
mechanical assistance in proving programs correct (see, e.g., [34, 27, 46]). To best in-
fluence the process by which a software engineer works, one can aim to enhance the
engineer’s primary thinking and working tool: the programming language. Indeed, a
number of programming languages have been designed especially with correctness in
mind, via specification and verification, as in, for example, the pioneering languages
Gypsy [1] and Euclid [35]. Other languages, perhaps most well-known among them
Eiffel [49], turn embedded specifications into run-time checks, thereby dynamically
checking the correctness of each program run.

Despite these visionary underpinnings and numerous victories over technical chal-
lenges, current software development practices remain costly and error prone (cf. [51,
47]). The most common forms of specification are informal, natural-language docu-
mentation, and standardized library interface descriptions (of relevance to this paper,
the .NET Framework, see, e.g., [55]). However, numerous programmer assumptions
are left unspecified, which complicates program maintenance because the implicit as-
sumptions are easily broken. Furthermore, there’s generally no support for making sure
that the program works under the assumptions the programmer has in mind and that
the programmer has not accidentally overlooked some assumptions. We think program
development would be improved if more assumptions were recorded and enforced. Re-
alistically, this will not happen unless writing down such specifications is easy and
provides not just long-term benefits but also immediate benefits.
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The Spec# programming system is a new attempt at a more cost effective way
to produce high-quality software. For a programming system to be adopted widely,
it must provide a complete infrastructure, including libraries, tools, design support,
integrated editing capabilities, and most importantly be easily usable by many pro-
grammers. Therefore, our approach is to integrate into an existing industrial-strength
platform, the .NET Framework. The Spec# programming system rests on the Spec#
programming language, which is an extension of the existing object-oriented .NET
programming language C#. The extensions over C# consist of specification constructs
like pre- and postconditions, non-null types, and some facilities for higher-level data
abstractions. In addition, we enrich C# programming constructs whenever doing so
supports the Spec# programming methodology. We allow interoperability with exist-
ing .NET code and libraries, but we guarantee soundness only as long as the source
comes from Spec#. The specifications also become part of program execution, where
they are checked dynamically. The Spec# programming system consists not only of a
language and compiler, but also an automatic program verifier, called Boogie, which
checks specifications statically. The Spec# system is fully integrated into the Microsoft
Visual Studio environment.

The main contributions of the Spec# programming system are

– a small extension to an already popular language,
– a sound programming methodology that permits specification and reasoning about

object invariants even in the presence of callbacks,
– tools that enforce the methodology, ranging from easily-usable dynamic checking

to high-assurance automatic static verification, and
– a smooth adoption path whereby programmers can gradually start taking advantage

of the benefits of specification.

1 The Language

The Spec# language is a superset of C#, an object-oriented language targeted for the
.NET Platform. C# features single inheritance whose classes can implement multiple
interfaces, object references, dynamically dispatched methods, and exceptions, to men-
tion the features most relevant to this paper. Spec# adds to C# type support for distin-
guishing non-null object references from possibly-null object references, method speci-
fications like pre- and postconditions, a discipline for managing exceptions, and support
for constraining the data fields of objects. In this section, we explain these features and
rationalize their design.

1.0 Non-null Types

Many errors in modern programs manifest themselves as null-dereference errors, sug-
gesting the importance of a programming language providing the ability to discrimi-
nate between expressions that may evaluate to null and those that are sure not to (for
some experimental evidence, see [24, 22]). In fact, we would like to eradicate all null-
dereference errors.
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We have opted to add type support for nullity discrimination to Spec#, because we
think types offer the easiest way for programmers to take advantage of nullity distinc-
tions. Backward compatibility with C# dictates that a C# reference type T denote a
possibly-null type in Spec# and that the corresponding non-null type get a new syntax,
which in Spec# we have chosen to be T ! .

The main complication in a non-null type system arises in addressing non-null fields
of partially-constructed objects, as illustrated in the following example:

class Student : Person {
Transcript ! t ;
public Student(string name,EnrollmentInfo! ei)

: base(name) {
t = new Transcript(ei);

}

Since the field t is declared of a non-null type, the constructor needs to assign a non-
null value to t . However, note that in this example, the assignment to t occurs after the
call to the base-class constructor (as it must in C#). For the duration of that call, t is
still null, yet the field is already accessible (for instance, if the base class constructor
makes a dynamically dispatched method call). This violates the type safety guarantees
of the non-null type system.

In Spec#, this problem is solved syntactically by allowing constructors to give ini-
tializers to fields before the object being constructed becomes reachable by the program.
To correct the example above, one writes:

class Student : Person {
Transcript ! t ;
public Student(string name,EnrollmentInfo! ei)

: t = new Transcript(ei),
base(name) {

}

Note that such an initializing expression can use the constructor’s parameters, a useful
feature that we deem vital to any non-null type design. Spec# requires initializers for
every non-null field.

Spec# allows non-null types to be used only to specify that instance fields, local
variables, formal parameters, and return types are non-null. Static fields cannot be de-
clared non-null, avoiding issues of partially initialized classes and class initialization
order, and array element types cannot be non-null types, avoiding both problems with
array element initialization and problems with C#’s covariant arrays.

To make the use of non-null types even more palatable for migrating C# program-
mers, Spec# stipulates the inference of non-nullity for local variables. This inference is
performed as a dataflow analysis by the Spec# compiler.

We have settled on this simple non-null type system for three reasons. First, prob-
lems with null references are endemic in object-oriented programming; providing a so-
lution should be very attractive to a large number of programmers. Second, our simple
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solution covers a majority of useful non-null programming patterns. Third, for condi-
tions that go beyond the expressiveness of the non-null type system, programmers can
use method and class contracts, as described below.

1.1 Method Contracts

Every method (including constructors, properties, and indexers) can have a specifica-
tion that describes its use, outlining a contract between callers and implementations. As
part of that specification, preconditions declare under which conditions the method is
allowed to be called, and hence are the caller’s responsibility. Postconditions declare un-
der which conditions the method is allowed to return. The throws set and its associated
exceptional postconditions limit which exceptions can be thrown by the method and
under which conditions. Finally, frame conditions limit the parts of the program state
that the method is allowed to modify. The postconditions, throws set, exceptional post-
conditions, and frame conditions are the implementation’s responsibility. Method con-
tracts establish responsibilities, from which one can assign blame in case of a contract-
violation error.

Uniform error handling in modern programming languages is often provided by an
exception mechanism. Because the exception mechanisms in C# and the .NET Frame-
work are rather unconstrained, Spec# adds support for a more disciplined use of excep-
tions to improve the understandability and maintenance of programs. As a prelude to
explaining method contracts, we describe the Spec# view of exceptions.

Exceptions Spec# categorizes exceptions according to the conditions they signal. Look-
ing at exceptions as pertaining to particular methods, Goodenough [28] categorizes
exceptions into domain failures and range failures. A domain failure occurs when a
method is invoked under an illegal condition, that is, when the method’s precondition
is not satisfied. We further refine range failures into admissible failures and observed
program errors. An admissible failure occurs when a method is not able to complete its
intended operation, either at all (e.g., the parity of a received network packet is wrong)
or after some amount of effort (e.g., after waiting on input from a network socket for
some amount of time). The set of admissible failures is part of the contract between
callers and implementations. An observed program error is either an intrinsic error in
the program (e.g., an array bounds error) or a global failure that’s not particularly tied
with the method (e.g., an out-of-memory error).

An important consideration among these kinds of exceptions is whether or not one
expects a program ever to catch the exception. Admissible failures are part of a pro-
gram’s intended possible behaviors, so we expect correct programs to catch and handle
admissible failures. In contrast, correct programs never exhibit domain failures or ob-
served program errors, and it’s not even clear how a program is to react to such errors.
If the program handles such failures at all, it would be at the outermost tier of the ap-
plication or thread.

Because of these considerations, Spec# follows Java [29] by letting programmers
declare classes of exceptions as either checked or unchecked. Admissible failures are
signaled with checked exceptions, whereas domain failures and observed program er-
rors are signaled using unchecked exceptions.
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ArrayList .Insert Method (Int32, Object)

Inserts an element into the ArrayList at the specified index.

public virtual void Insert(int index ,object value);

Parameters

– index The zero-based index at which value should be inserted.
– value The Object to insert. The value can be a null reference.

Exceptions

Exception Type Condition
ArgumentOutOfRangeException index is less than zero.

–or–
index is greater than Count .

NotSupportedException The ArrayList is read-only.
–or–
The ArrayList has a fixed size.

Fig. 0. The .NET Framework documentation for the method ArrayList .Insert .

In Spec#, any exception class that implements the interface ICheckedException is
considered a checked exception.

Preconditions Perhaps the most important programmer assumption is the precondition.
Here is a simple example of a method with a precondition:

class ArrayList {
public virtual void Insert(int index ,object value)

requires 0 <= index && index <= Count ;
requires !IsReadOnly && !IsFixedSize;

{ . . . }

The precondition specifies that the index into which the object is to be inserted in the
array list must be within bounds, and that the list can grow. Boogie attempts to verify
these preconditions at all call sites, reporting an error if it cannot. In the event that a
caller (to which Boogie was not applied) fails to establish the precondition at run time,
a RequiresException is thrown, representing a domain failure.

The .NET Framework documentation for this method is shown in Figure 0. There is
a subtle difference between the .NET documentation for Insert and our specification of
it above. Both specifications state what’s expected of the caller; the difference lies in the
action taken in the event that preconditions are violated. To support this typical robust-
programming style of .NET Framework specifications, Spec# introduces preconditions
with otherwise clauses. These can be used to tell the compiler to use a specified
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exception, rather than the default RequiresException , in the event that a precondition
violation is detected at run time:

class ArrayList {
void Insert(int index ,object value)

requires 0 <= index && index <= Count
otherwise ArgumentOutOfRangeException;

requires !IsReadOnly && !IsFixedSize
otherwise NotSupportedException;

{ . . . }
Since it represents a domain failure, the exception used in an otherwise clause must
be an unchecked exception.

If an exception is thrown during the evaluation of a precondition, or of any other
contract in Spec#, then the exception is wrapped in a contract exception and propa-
gated. This is in contrast to the run-time evaluation of contracts in JML, where such
exceptions are caught and the surrounding formula is treated as if it returned a boolean
value according to certain rules, see [14].

Postconditions Method specifications can also include postconditions. For example,
one can specify the postconditions of Insert as follows:

ensures Count == old(Count) + 1;
ensures value == this[index ];
ensures Forall{int i in 0 : index ; old(this[i ]) == this[i ]};
ensures Forall{int i in index :old(Count); old(this[i ]) == this[i + 1]};

These postconditions say that the effect of Insert is to increase Count by 1, to insert
the given value at the given index, and to keep all other elements in their same relative
positions. This example also shows some other Spec# specification features: In the first
line, old(Count) denotes the value of Count on entry to the method. In the third line,
the special function Forall is applied to the comprehension of the boolean expression
old(this[i ]) == this[i ] , where i ranges over the integer values in the half-open
interval from 0 to less than index .

Boogie attempts to verify each implementation of Insert against these postcondi-
tions, reporting an error if it cannot. In the event that an implementation (to which Boo-
gie was not applied) fails to establish the postcondition at run time, an EnsuresException
is thrown, representing an observed program error.

For run-time checking, we have adopted Eiffel’s mechanism for evaluating old(E ) .
On entry to a method, the expression E of any old(E ) occurring in a postcondition is
evaluated and the resulting value is saved away. Then, whenever (and if) this value of
old(E ) is needed during the evaluation of the postcondition, the saved value of E is
used. Note that the value of old(E ) may in fact not be needed during the evaluation of
the postcondition due to short-circuit boolean expressions or because the method does
not terminate normally.

The example above also illustrates a more general point about the differences be-
tween checking contracts statically and dynamically. Boogie has knowledge about the
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program and its built-in data structures. It also has support for quantifiers and can there-
fore check the postconditions of Insert statically. Contracts that use procedural ab-
straction, however, can be a problem for static modular checking, since such checking
has access only to a limited part of the program. Likewise, contracts that use higher-
level data structures can be a problem for static checking, because of limitations of
decisions procedures and axiomatizations of some theories. Here, dynamic checking is
straightforward. On the other hand, the dynamic checking of postconditions can be quite
involved when old expressions mention quantified variables, as exemplified above.

Though we expect the bulk of specifications to be simple, the more general point is
that Spec# supports expressive specifications even when those specifications push the
limits of today’s checking technology.

Exceptional postconditions As in Java, each method whose invocation may result in
a checked exception must account for that exception in the method’s throws set. For
example, the declaration

char Read()
throws SocketClosedException;

{ . . . }
where SocketClosedException is a checked exception class, allows the method to
throw any checked exception whose allocated type is a subclass of SocketClosedException ,
but is not allowed to throw any other checked exception. The Spec# compiler holds ev-
ery implementation to its throws set by a conservative control-flow analysis. A throws
clause in Spec# can only mention checked exceptions.

Spec# allows a throws declaration to be combined with a postcondition that takes
effect in the event that the exception is thrown. For example, the exceptional postcon-
dition in

void ReadToken(ArrayList a)
throws EndOfFileException ensures a.Count == old(a.Count);

{ . . . }
says that the length of a is unchanged in the event that the method results in an
EndOfFileException .

Without further restrictions, it would be possible for a program to foil the compiler’s
throws-set analysis, which would then undermine Spec#’s guarantee that every checked
exception is accounted for. Consider the following example:

void ExceptionScam() {
Exception e = new MyCheckedException();
throw e;

}
The root of the exception class hierarchy, Exception , is an unchecked exception (be-
cause it comes from C#, where all exceptions are unchecked). Nevertheless, any checked
exception is assignable to this superclass. Consequently, we must disallow the throw
statement in the scamming method. The compiler’s throws-set analysis works off static
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types, but static types are not sufficient to outlaw this behavior. Therefore, whenever
the static type of the expression in a throw statement is an unchecked exception, the
compiler inserts a run-time check that the run-time value of this exception is in fact not
a checked exception.

For more information about exceptions in Spec#, see our companion paper on ex-
ception safety [43].

Frame conditions Spec# method contracts also include modifies clauses (also known
as frame conditions), which restrict which pieces of the program state a method imple-
mentation is allowed to modify. For example, in the class

class C {
int x , y;
void M () modifies x ; { . . . }

method M is permitted to have a net effect on the value of x , whereas the value of y
on exit from the method must have the same value as on entry.

Any realistic design of modifies clauses includes some facility for abstracting over
program state that for reasons of information hiding cannot be mentioned in the method
contract. For example, the implementation of ArrayList .Insert is going to modify
the private representation of the ArrayList , but private variables are not allowed to be
mentioned explicitly in the contract of a public method. Instead, a wildcard can be used.
For example, the specification

modifies thisˆArrayList ;

allows any field of this declared in class ArrayList to be modified. Spec# also sup-
ports other flavors of wildcards (see [4]), which additionally address the problem of
specifying the modification of state in subclasses (cf. [38]).

But wildcards are still just a partial solution to the frame problem, because they
don’t extend to aggregate objects. For example, the ArrayList implementation consists
of an array and a count. The modifies clause above allows the count and the reference
to the array to be changed, but says nothing about the array elements. To deal with
aggregate objects, Spec# uses a concept of ownership. We say that the ArrayList owns
its underlying array, that the array is committed to the ArrayList . Modifications to
the state of committed objects do not need to be mentioned explicitly in the modifies
clause. For more details, see [4], which also describes the connection between ownerhip
and object invariants.

Frame conditions serve as documentation and are used and enforced by Boogie,
but they are currently not enforced at run time. First, run-time checking of modifies
clauses can be prohibitively expensive, since the checking must compare arbitrarily
large portions of a method’s pre-state and post-state. Second, we are aiming for a
smooth transition to Spec# from C#, so we want a liberal default modifies clause
that will not incur run-time errors in compiled C# programs that otherwise are correct.
Unfortunately, the most liberal default (“everything can be modified”) is not very use-
ful to Boogie, and any slightly stricter default is bound to be problematical for some
C# programs. Therefore, we let Boogie choose a promising default and omit run-time
checking of modifies clauses.
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Inheritance of specifications In Spec#, a method’s contract is inherited by the method’s
overrides. The run-time checks evoked by the method contract are thus also inherited.
Not only does this make the specifications more definitive and reliable than today’s
documentation, but the Spec# specifications also make the code of an implementation
easier to read, since today’s manually written code for checking preconditions can be
rather lengthy.

A method override can add more postconditions by declaring additional ensures
clauses. The override can add exceptional postconditions only for those exceptions that
are already in the throws set. modifies clauses in an override are allowed, provided
they restrict the locations mentioned in the base method. Spec# does not allow any
changes in the precondition, because callers expect the specification at the static reso-
lution of the method to agree with the dynamic checking.

Methods declared in an interface can have specifications, just like the methods de-
clared in a class. Interfaces give rise to a form of multiple inheritance, because a class
can inherit a method signature from the superclass and its implemented interfaces.
Traditionally, these inherited specifications are combined [56], which is what Spec#
does for postconditions. Spec# also combines exceptional postconditions, but the in-
herited specifications must have identical throws sets. If a class implements an interface
method, then the interface declaration of the method must have a frame condition that is
a superset of the class implementation of the method. Spec# does not combine precon-
ditions, unless they are the same, for the reason explained above. Since the obvious def-
initions of “the same” are either syntactic and brittle, or semantic and require theorem
proving, Spec# uses the radical solution of allowing multiple inherited specifications
only when these have no requires clauses.

We give an example that shows Spec#’s radical precondition solution not to be too
draconian. Consider the following interfaces:

interface I { void M (int x ) requires x <= 10; }
interface J { void M (int x ) requires x >= 10; }

Suppose a class C wants to implement both interfaces I and J . In this case, Spec#
does not allow C to provide one shared implementation for I .M and J .M . Instead,
class C needs to give explicit interface method implementations for M :

class C : I , J {
void I .M (int x ) { . . . }
void J .M (int x ) { . . . }

(Explicit interface method implementations are a feature of C#.) Because an explicit
interface method implementation cannot be accessed other than through the interface,
it gets its contract straight from the interface.

Taken together, the Spec# rules for contract inheritance guarantee that a derived
specification always properly obeys the behavioral subtyping rules [21, 23].

Custom attributes on specifications C# provides custom attributes as a way to attach
arbitrary data to program structures, such as classes, methods, and fields. A custom
attribute is compiled into metadata whose standard format allows various applications
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to read the custom attributes attached to a particular declaration. Spec# also allows each
specification clause to be annotated with custom attributes.

Custom attributes allow users of third-party tools to mark up specifications in tool-
specific ways. For instance, the Spec# compiler uses the Conditional custom attribute
to control which specifications are emitted as run-time checks in the current build. For
example, for the following method

int BinarySearch(object[ ]! a,object o, int lo, int hi)
requires 0 <= lo && lo <= hi && hi <= a.Length;
[Conditional(”DEBUG”)]
requires IsSorted(scores);

{ . . . }
the compiler emits run-time checks for both preconditions in the debug build, but emits
a check only for the first precondition in the retail build. This supports the common
programming style of debugging assertions (see, e.g., [48]).

We want to have the property that a program that runs correctly with all contract
checking enabled also runs correctly if some of the contract checking is disabled. There-
fore, we require all expressions appearing in contracts to be pure, meaning that they
have no side effects and do not throw any checked exceptions. The compiler enforces
this condition using a conservative effect system.

1.2 Class Contracts

Specifying the rules for using a library or abstraction is done primarily through method
contracts, which spell out what’s expected of the caller and what the caller can expect
in return from the implementation. To specify the design of an implementation, one
primarily uses specifications that constrain the value space of the implementation’s data.
These specifications are called object invariants and spell out what is expected to hold
of each object’s data fields in the steady state of the object. For example, the class
fragment

class AttendanceRecord {
Student [ ]! students;
bool[ ]! absent ;
invariant students.Length == absent .Length;

declares that the lengths of the arrays students and absent are to be the same.
As we can see from the simple example above, it is not possible for an object in-

variant always to hold, because it is not possible in the language to change the lengths
of two arrays simultaneously. This is why we say the object invariant holds in steady
states, which essentially means when the object is not currently being operated on. Fol-
lowing our methodology for object invariants [4, 40, 7], Spec# makes explicit when an
object is in its steady state versus when it is exposed, which means the object is vul-
nerable to modifications. Spec# introduces a block statement expose that explicitly
indicates when an object’s invariant may temporarily be broken: the statement

expose (o) {
S ;

}
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exposes the object o for the duration of the sub-statement S , which may then operate
on the fields of o . Because field modifications in an object-oriented program tend to
be encapsulated in the class that declares the field, the expression o is usually this .
The object invariant is supposed to hold again at the end of the expose statement and
Spec# enforces this with a run-time check. Object invariants are also checked at the end
of constructors (though there’s some flexibility that allows the initial check of an object
invariant to be performed elsewhere; we omit the details here).

By default, whenever a class or any of its superclasses has a declared invariant,
every public method of the class has an implicit

expose (this) { . . . }
around the method body. We believe that this default, which can be disabled by a custom
attribute on the method, removes most of the need for explicit expose statements.

Exposing an object is not idempotent. That is, it is a checked run-time error if
expose (o) . . . is reached when o is already exposed. In this way, the expose mech-
anism is similar to thread-non-reentrant mutexes in concurrent programming, where
monitor invariants [32] are the analog of our object invariants. If exposing were idem-
potent, then one would not be able to rely on the object invariant to hold immediately
inside an expose block, in the same way that the idempotence of thread-reentrant mu-
texes means that one cannot rely on the monitor invariant to hold at the time the mutex
is acquired.

For Spec#’s object-invariant methodology to be sound, all modifications of a field
o.f must take place while the object o is exposed. Furthermore, the methodology struc-
tures object references by an ownership relation that induces a dynamically-changeable
hierarchy. Such modifications and ownerships are enforced by Boogie, but are not en-
forced at run time.

Object invariants can be declared in any class. To support modular checking of
invariants, so that a class does not need to know the invariants of its superclasses and
future subclasses, object invariants are partitioned into class frames according to the
class that declares each invariant [4, 17]. The expose mechanism deals with class
frames.

To reduce the initial cost of adding expose statements and to handle non-virtual
methods in a more backward compatible way (see [4]), Spec# allows one expose
statement to expose more than one class frame. To explain this feature, we first need to
show the more general form of the expose statement in Spec#, which is

expose (o upto T ) { . . . }
where T is a superclass of the static type of the expression o . If “upto T ” is omit-
ted, T defaults to the static type of expression o . More precisely than we described it
above, the statement exposes all of o ’s class frames from above its currently exposed
class frame through T (also exposing the class frame T itself). Non-idempotence re-
quires that at least one class frame is exposed as part of the operation. At the end of
the expose block, the class frames that were exposed on entry are un-exposed, and
the object invariant for each of those class frames is checked. This is done at run-time
using compiler-emitted dynamically-dispatched methods that check the invariants.
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The behavior of exposing an unknown number of class frames, and in particular
the behavior of checking the invariants for class frames whose declarations may not be
in scope, poses a problem for modular, static verification. Therefore, we use a stricter
model for expose in Boogie. In particular, whereas the precondition for

expose (o upto T ) { . . . }
as enforced by run-time checks is that o ’s T class frame is un-exposed—that is, that
the o ’s most-derived un-exposed class frame is a subclass of T —Boogie strengthens
this precondition by requiring o ’s most-derived un-exposed class frame to be exactly
the static type of expression o . This way, Boogie is able to find all the object invari-
ants that it needs to check at the end of the expose block. In effect, this difference in
policy between the run-time behavior and what’s enforced by Boogie means that pro-
grammers more easily can get started with writing and running Spec# programs, but
then may need to exert additional effort in order to obtain the higher confidence in the
program’s correctness assured by Boogie (just as additional effort is required to make
sure Boogie’s modification and ownership rules are satisfied).

Object invariants are allowed to mention only constants, fields, arrays, state inde-
pendent methods, and confined methods. A method is state independent if it does not
depend on mutable state. A confined method may depend on the state of owned ob-
jects. The Spec# compiler includes a conservative effect analysis to check that these
properties are obeyed.

Spec# also supports class invariants, which are useful to document assumptions
about static fields. Methodology and constraints for class invariants are similar to those
for object invariants, execpt that there is no inheritance. The expose statement simply
takes a class instead of an object as a parameter.

2 System Architecture

The Spec# programming system consists of the compiler, a runtime library, and the
Boogie verifier. The compiler has been fully integrated into the Microsoft Visual Studio
environment in terms of the project system, build process, design tools, syntax high-
lighting, and IntelliSense features.

The Spec# compiler differs from an ordinary compiler in that it does not only pro-
duce executable code from a program written in the Spec# language, but also serializes
all specifications into a language-independent format. Having the specifications avail-
able as a separate, compiled unit means program analysis and verification tools can
consume the specifications without the need to either modify the Spec# compiler or to
write a new source-language compiler.

The two potentially conflicting roles for the Spec# compiler can both be met, in part,
because the Spec# compiler targets the Microsoft .NET Common Language Runtime
(CLR) [10]. The CLR provides rich metadata facilities for associating many types of
information with most elements of the type system (types, methods, fields, etc.). The
Spec# compiler attaches a serialized specification to each program component for which
a specification exists. (Technically, the specifications are serialized as strings stored in
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custom attributes. All names are fully resolved; while this renders the format quite
verbose, it makes it much easier for any tools consuming it.)

As a result, we made the design decision to have Boogie consume compiled code,
rather than source code. An additional benefit is that Boogie can be used to verify code
written in other languages than Spec#, as long as there is an out-of-band process for
attaching contracts to such code. We use such a process to attach specifications to the
.NET Framework Base Class Library (BCL), see Section 2.2.

2.0 Runtime Checking

Spec# preconditions and postconditions are turned into inlined code. We do this not
only for performance reasons, but also to avoid creating extra methods and fields in
the compiled code. All such inlined code is tagged so that code corresponding to the
Spec# contracts can be differentiated from the code that comes from the rest of the
Spec# program. Such separation is required by any analysis tool that consumes Spec#
contracts from the metadata. For instance, Boogie must be able to determine if the non-
contract code in a method meets its postcondition, rather than the combination of the
non-contract code followed by the code that checks the postcondition. The inlined code
evaluates the conditions and, if violated, throws a contract exception.

It is unavoidable that new methods must be created for object invariants. We add a
method that checks all of the relevant invariants for each class that declares an invari-
ant. Special object fields, such as the invariant level [4] and owner of an object [40],
are added to the super-most class that uses Spec# features within each subtree of the
class hierarchy. As we mentioned in Section 1, the runtime does not enforce the whole
methodology; for instance, run-time checking does not check that an object is exposed
before updating a field. This means that an error may go undetected at run-time that
would be caught by Boogie.

2.1 Static Verification

From the intermediate language (including the metadata), Spec#’s verifier, Boogie, con-
structs a program in its own intermediate language, BoogiePL. BoogiePL is a simple
language with procedures whose implementations are basic blocks consisting mostly of
four kinds of statements: assignments, asserts, assumes, and procedure calls (cf. [42]).

An inference system processes the BoogiePL program using interprocedural ab-
stract interpretation [15, 52] to obtain properties such as loop invariants. Any derived
properties are added to the program as assert statements or assume statements. The
BoogiePL program then goes through several transformations, ending as a verification
condition that is fed to an automatic theorem prover. The transformations, such as cut-
ting all loops to derive an acyclic control flow graph by introducing havoc statements,
are done in a way that preserves the soundness of the analysis. A havoc statement as-
signs an arbitrary value to a variable; introducing havoc statements for all variables
assigned to in a loop causes the theorem prover to consider an arbitrary loop iteration.
All feedback delivered from the theorem prover to the user is first mapped back onto
the source program [39]. The result is that programmers interact with Boogie’s prover
only by making changes at the program source level, for instance by adding contracts.
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Currently, Boogie uses the Simplify theorem prover [18], but we intend to switch to
a new experimental theorem prover being developed at Microsoft Research [2].

2.2 Out-of-band Specifications and Other Goodies

All .NET applications use the Base Class Library in one form or the other. Thus we
want to provide specifications for the entire BCL. This gives any client an immediate
benefit even before writing a single contract.

But this raises a problem: how to provide a mechanism for attaching Spec# contracts
to code that was written without them? (Note that we cannot modify the BCL even if
we would use its implementation, since doing so would break versioning.) Out-of-band
specifications, i.e., specifications for code external to Spec#, are compiled into a Spec#
repository. The repository is consulted in case the Spec# compiler or Boogie encounters
a method or class for which it requires a specification (i.e., when the compiler emits run-
time checks or when Boogie generates verification conditions), but the method or class
in the original code does not have an attached specification.

Writing contracts for self-contained examples is easy, but realistic programming is
highly dependent on libraries, such as the BCL. A large obstacle then is obtaining con-
tracts for the existing libraries. A companion project is working on semi-automatically
generating contracts for exisiting code. It has automatically extracted almost three thou-
sand preconditions for the current version of the BCL.

We have plans to build an explainer that translates Spec# method contracts into
natural-language documentation entries. For example, it seems that one could trans-
late preconditions and throws sets into the stylized exception tables used in the .NET
documentation, see Figure 0. This could better keep the documentation accurate and
up-to-date.

Finally, we are planning a tool for translating Spec# into plain C#. (There are still
some problems, like figuring out what to do with field initializers, that we need to ad-
dress.) This tool will allow the use of Spec# within the normal development process.
For instance, most Microsoft development groups insist on building their products us-
ing only official Microsoft compilers. In this context, Spec# would function as a pre-
compiler; however, it is this invisibility that is important to gaining acceptance in a
rigorous build environment.

3 Related Work

A number of programming languages have been designed especially with correctness or
verification in mind. These include the pioneering languages Gypsy [1], Alphard [57],
Euclid [35], and CLU [44], which offered different degrees of formality. In Gypsy,
which was the first language to include specifications as an integral part of the program-
ming language, the specifications integrated in the source program were aimed directly
at program verification via an interactive theorem prover. Alphard was designed around
a programming methodology for designing and proving object-like data structures, but
the proofs were done by hand. In Euclid, specifications written in the programming lan-
guage’s boolean expressions were checked at run time, with the idea that more compli-
cated specifications, which were supplied in comments, would be used by some external
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program-verification tool. The CLU programming methodology prominently included
specifications, but these were recorded only as stylized comments.

Three modern systems with contracts that have had a direct effect on practical pro-
grams are Eiffel [49], SPARK [3], and B [0].

Eiffel [49] is an object-oriented language with almost 20 years of use. The standard
library is well documented through contracts, so contracts fall prominently within the
purview of programmers. The contracts are enforced dynamically. However, without
a full methodology for modifies clauses and for object invariants in the presence of
callbacks, it would not be possible to obtain modular static verification. We hope to
bring the successes of Eiffel to the .NET Platform where we hope to reach more pro-
grammers, and to provide a methodology and toolset that also can do static verification.

SPARK [3] is a limited subset of Ada, without many dynamic language features like
references, memory allocation, and subclassing, yet large enough to be useful for many
embedded applications. Praxis Critical Systems has used SPARK in the development of
several industrial programs, and their measurements indicate that the rigor provided by
SPARK can be cost effective [13]. SPARK offers a selection of static tools, from light-
weight sanity checking to full verification with an interactive theorem prover. Compat-
ibility with an existing language has been a high priority in the design of SPARK, just
like for Spec#, but their approach is quite different from ours. By ruling out difficult
features of Ada, SPARK achieves the property that any SPARK program can be com-
piled by any standard Ada compiler while retaining its SPARK meaning (all SPARK
specifications are placed in stylized Ada comments, and thus they are not used by the
compiler). To meet our goal of migrating normally skilled programmers to a higher-
integrity language, we have been unable to follow SPARK’s approach of designing a
subset of an existing language. Instead, we have designed Spec# to be a superset of an
existing language, aiming to support easy and gradual adoption of its new features.

The B approach [0] uses a different methodology for writing programs: starting
from full specifications and supporting a machine-aided process for stepwise refining
the specifications into compilable programs. The resulting programs are similar in ex-
pressiveness to SPARK programs. This methodology, which has been used with success
for example in constructing the Paris Metro braking system software, produces only cor-
rect programs. However, the skills needed to go through the refinement process make
for a steep learning curve for the system and become a barrier for many programmers.
It is also not obvious how to extend the methodology to more expressive abstractions,
like those in object-oriented programs today.

The Java Modeling Language (JML) [36, 37] is a notation for writing specifications
for Java programs. JML specifications, which include rich flavors of method contracts,
are recorded in Java source code as stylized comments. An impressive array of tools
have been build around JML, including tools for documentation, run-time checking,
unit testing, light-weight contract checking, and program verification [12]. Spec# pro-
vides a more focused methodology than JML, which for example has yet to adopt a full
story for object invariants in the presence of callbacks. The design space of Spec# is
somewhat less constrained than JML, since JML does not seek to alter the underlying
programming language (which, for example, has let Spec# introduce field initializers
and expose blocks).
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The language AsmL has many of the same aspirations as Spec#: to be an acces-
sible, widely-used specification language tailored for object-oriented .NET systems.
However, AsmL is oriented toward supporting model-based development with its facil-
ities for model programs, test-case generation, and meta-level state exploration [6]. Our
experiences in using AsmL for interface specification [8], run-time verification [9], and
an on-going project with a product group [5] contributed to the design of Spec#.

The Anna [45] specification language for Ada lets programmers write down impor-
tant design decisions. The specifications are compiled into run-time checks.

The first mechanical systems for proving programs correct were conceived and built
several decades ago. These include the early, but not entirely automatic, systems of
King [34, 33] and Deutsch [20], Gypsy [27], and the Stanford Pascal Verifier [46].
More recent program verifiers include Penelope (for Ada) [30] and LOOP (for Java
and JML) [54], both of which require interactive theorem proving.

Setting early efforts by Sites [53] and German [26] into full motion, the Extended
Static Checker for Modula-3 (ESC/Modula-3) [19] changed the rules of the game by
leveraging the power of an automatic theorem prover not for proving the full functional
correctness of programs, but for the limited aim of finding common errors in programs.
Continuing in that tradition, ESC/Java [19] wrapped that technology with a simpler
contract language (a subset of JML), aiming to deliver a practical high-precision tool
for normally skilled programmes. A key ingredient that enables these ESC tools to do
useful checking is the willingness to miss certain errors, since that can lead to a simpler
specification language and to better odds for the automatic theorem prover to succeed.
Boogie attempts to completely verify a program without missing errors; its ability to do
so is bound to depend on the simplicity of the specifications.

Spec# provides a limited type system for non-null types. A more comprehensive
type-system solution has been proposed by Fähndrich and Leino [22]. Their design
deals with the complication of non-null fields by introducing additional raw types for
partially-constructed objects.

Various abstraction facilities that help define modifies clauses in modern object-
oriented languages have been proposed (e.g., [41, 50, 38]).

Our methodology for object invariants and modifies clauses relies on object own-
ership to impose a structure on the heap [4, 40, 7]. Similar effects have been achieved
by ownership types and other alias-confinement strategies (e.g., [16, 11]). The earliest
such use we’ve seen dates back to Alphard [57], where the modifier unique specifies
that a field points to an owned object.

4 Concluding Remarks

The core of the Spec# programming system is the Spec# programming methodol-
ogy, the Spec# language, the Spec# compiler, and the Boogie static program verifier.
The methodology prescribes for the first time how to deal properly with object invari-
ants. The Spec# language embodies the methodology: Spec# enriches C# with non-null
types, contracts, comprehensions, and quantifications. The Spec# compiler uses a com-
bination of static-analysis techniques and run-time checks to guarantee soundness of
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the language. The verifier tries to check the consistency between a program and its
specifications.

We are trying to make the Spec# system a practically useful software tool that en-
ables normally skilled programmers to write down and verify their assumptions. There-
fore, we start from a familiar programming language and use the metaphor of type
checking for exposing the new capabilities of our static checking technology. Users
that switch to the Spec# system get immediate benefits: users start with access to a
partially specified base class library; users can retrofit existing code with new specifi-
cations; users can automatically extract requires− otherwise clauses from existing
libraries; part of the API documentation of a Spec# class comes for free; and users can
pretty print Spec# as C#.

Our design of Spec# has focused on sequential programs, but we are optimistic that
our methodology can be extended to styles of concurrent programs. It seems plausi-
ble that Spec# could also be of direct help in building secure applications. It would
be interesting to explore the combination of our methodology with the stack walking
mechanism of code access security in the context of existing libraries for permissions,
authentication, and cryptography.
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